EDNA

Quick status of the project

Olof Svensson
Data Analysis Unit
ISDD ESRF
Why do we need EDNA?

• EDNA is the best answer we (developers) have come up with so far for answering these questions:

 - How can we automate data analysis workflows?
 • “pipeline” existing scientific software for (online) data analysis workflows
 • abstract certain calculations to be “generic”, e.g. indexing of a diffraction pattern
 • “flexible” workflows, rapid changes depending on the scientific needs

 - How can we make these workflows robust?
 • easily adapted to new versions of scientific software packages

 - How can we collaborate efficiently?
 • re-use of code without breaking existing functionality
What is EDNA?

- EDNA is about collaboration:
 - Code sharing (SVN)
 - Coding conventions
 - Code reviews
 - Open source (LGPL, GPL)
 - Bug tracker
 - Wiki : http://www.edna-site.org
 - Memorandum of Understanding
 - Executive committee
 - Project manager / coordinator
 - Regular meetings / video conferences

- EDNA is a framework:
 - “Generic” kernel
 - Data modelling framework
 - Support for multi-threaded modules (plugins) development
 - Support for workflow development
 - Testing framework
 - “Specific” applications (MXv1, bioSaxs etc.)
 - Automatic testing and nightly builds
 - Automatic API doc generation
 - No GUI
EDNA Modularity: Plugins and their hierarchy

- Plugin base class:
 - Configuration, working directory, etc.

- Execution plugins:
 - Execution of external programs, e.g. (bash) scripts

- Controller plugins:
 - Control of execution plugins
 - Parallel execution
 - Synchronisation
MXv1 Characterisation v1.1

- MX sample characterisation taking into account radiation damage
- Indexing using MOSFLM or Labelit
- Parallel integration of reference images
- If flux + beamsize:
 - RADDOSE for estimating radiation damage
- BEST strategy calculation
 - taking into account radiation damage
 - multi-subwedge data collection strategies
EDNA / Passerelle Characterisation Workflow

Director

ref-testscale_1_001 → Header001 → MXv1 Indexing → MXv1 Integration → MXv1 Strategy Calculation

Open File → Open BEST log
MXv1 Characterisation v1.2

+ Xtal info
+ beam flux
+ diffraction plan

MOSFLM indexing

Indexing Evaluation
Ok

Failure

LABELIT indexing

Indexing Evaluation
Ok

MOSFLM Predictions

MOSFLM integration

[RADDOSE]

BEST

Data collection plan
Existing scientific EDNA workflows

- Macromolecular crystallography:
 - Characterisation taking into account radiation damage (MOSFLM, Labelit, RADDOSE, BEST)
 - Connection with experiment data base (ISPyB)
 - Parallel execution of characterisation (GRID data processing)
 - Parallel creation of image thumbnails

- Diffraction Computed Tomography
 - SPD: Image correction, fast azimuthal integration
 - Sinograms saved in HDF5 format

- Small Angle Scattering
 - Image correction and fast azimuthal integration

- Full Field XAS
 - Image correction (dark, flat)
 - Image alignment (offset measurements by FFT)
 - HDF5 output
How EDNA will evolve in the future

• Common EDNA developments (Kernel):
 • Improvements of the data model framework (in progress)
 • Improvements of logging (in progress)
 • Full support of Windows and MacOS (in progress)
 • Enhanced support of grid engines / job schedulers
 • Improved documentation (plugin use cases)
 • Graphical workflow editor (Data Analysis Workbench)

• Scientific developments:
 • MX further enhancements of characterisation (kappa, XDS etc)
 • MX auto processing wrappers
 • Biosaxs data analysis (EMBL Hamburg software suite)
 • Tomography
 • More to come...