MX Automation

- Goal: Full automation from sample loading to reduced (integrated and scaled) data
Screening at the ESRF

A. ESRF Beamlines and BM14

B. ID14-1,2 and 3

- Collections
- Screening
- Data sets
- Percent collected

<table>
<thead>
<tr>
<th>Year</th>
<th>Collections</th>
<th>Screening</th>
<th>Data Sets</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Massively Automated Sample Selection Integrated Facility

- Baskets from Lab DS loaded on screening carrousel
- Screening station(s)
 - Samples taken from Lab baskets & put back after screening
- Sorting/Cleaning station
 - From sorting to data collection
 - From data collection to sorting/cleaning
- Manual transfer to Data collection station(s)

Diagram showing the workflow from storage to screening, screening to sorting, and sorting to cleaning.
What is EDNA?

• EDNA is an international collaborative project between several institutes and synchrotron facilities.

• Developed on the foundation of the project automateD collectioN of datA (« DNA », www.dna.ac.uk)

• Designed to be a framework for Online Data Analysis (of X-ray experiments)
The EDNA Project / Framework
EDNA Project Management (1)

- Executive Committee:
 - Alun Ashton, DLS, UK
 - Gérard Bricogne, Global Phasing, UK
 - Andrew Leslie, MRC LMB, Cambridge, UK
 - Andrew McCarthy, EMBL-Grenoble, France
 - Sean McSweeney, ESRF, Grenoble, France
 - Thomas Schneider, EMBL-Hamburg, Germany
 - Andrew Thompson, Synchrotron Soleil, France

- Other members from:
 - BESSY, Berlin, Germany
 - MAX LAB, Lund, Sweden
 - NSLS, Brookhaven, U.S.
 - SLS, Villigen, Switzerland
 - University of Sydney, Australia
 - University of York, UK
EDNA Project Management (2)

- Project agreement
- Coding conventions
- Code reviews
- Development tools
 - Eclipse
 - Enterprise architect
- Project portal
 - http://www.edna-site.org
 - Wiki documention
 - Bugzilla server
 - Subversion server
 - Discussion forum
- Executive committee
- Video conferences
- Developers' meetings & workshops

Marratech video-conferencing tool
The EDNA Data Model Framework

• From UML diagrams to generated code (data binding):

```xml
<xs:element name="XSDataSample" type="XSDataSample"/>
<xs:complexType name="XSDataSample">
    <xs:complexContent>
        <xs:extension base="XSData">
            <xs:sequence>
                <xs:element name="absorbedDose" type="XSDataAbsorbedDose" minOccurs="0" maxOccurs="1"/>
                <xs:element name="shape" type="XSDataFloat" minOccurs="0" maxOccurs="1"/>
                <xs:element name="size" type="XSDataSize" minOccurs="0" maxOccurs="1"/>
                <xs:element name="susceptibility" type="XSDataFloat" minOccurs="0" maxOccurs="1"/>
            </xs:sequence>
        </xs:extension>
    </xs:complexContent>
</xs:complexType>
```
EDNA Modularity: Plugins and their hierarchy

- **Plugin base class:**
 - Configuration, working directory, etc.

- **Execution plugins:**
 - Execution of external programs, e.g. (bash) scripts

- **Controller plugins:**
 - Control of execution plugins
 - Parallel execution
 - Synchronisation

- EDNA is partly based on AALib, however AALib is not a part of EDNA collaboration
EDNA Testing Framework

• The EDNA testing framework consist of three layers:
 • Kernel Unit tests
 • Plugin Unit tests
 • Plugin Execution tests

• Example: the EDNA Test Suite All result:

```
[SUCCESS] [ 3 ][ EDTestCasePluginExecuteControlSubWedgeAssemblev10.execute ][1.42272996902]
[SUCCESS] [ 1 ][ EDTestCasePluginExecuteControlSubWedgeAssemblev10.testExecute ][1.38881707191]
[SUCCESS] [ 4 ][ EDTestCasePluginExecuteControlSubWedgeAssemblev10NineImageSubWedge.execute ][2.38712197437]
[SUCCESS] [ 1 ][ EDTestCasePluginExecuteControlSubWedgeAssemblev10NineImageSubWedge.testExecute ]
```

[TestUnit]: ###
[TestUnit]: EDTestSuiteAll summary report:
[TestUnit]: TestSuites: 2
[TestUnit]: Total TestCases: 48
[TestUnit]: Total TestCases [SUCCESS]: 48
[TestUnit]: Total TestCases [FAIL]: 0
[TestUnit]: [Total TestMethods]: 96
[TestUnit]: Runtime: 444.1 [s]
[TestUnit]: Run: 00d:00h:07m:24s:096ms

EDNA Collaborators

Alexander Popov(e)
Alun Ashton(b)
Andrew Leslie(h)
Andrew McCarthy(c)
Andrew Thompson(k)
Clemens Schulze(j)
Clemens Vornhein(f)
Darren Spruce(e)
Elspeth Gordon(e)
Ezequiel Panepucci(j)
Gérard Bricogne(f)
Gerrit Langer(c)
Gleb Bourenkov(c)
Gordon Leonard(e)
Harry Powell(h)
Johan Turkenburg(m)
Johan Unge(g)
John Skinner(i)
Karl Levik(b)
Katherine McAuley(b)
Lucile Roussier(k)
Marie-Françoise Incardona(e)
Mark Basham(b)
Meitian Wang(j)
Michael Hellmig(a)
Olga Roudenko(k)
Peter Keller(f)
Peter Turner(l)
Pierre Legrand(k)
Robert Sweet(i)
Romeu Pieritz(e)
Sandor Brockhauser(c)
Sean McSweeney(e)
Takashi Tomizaki(j)
Thomas Schneider(c)
Uwe Mueller(a)

(a) BESSY, Berlin, Germany
(b) Diamond Light Source, UK
(c) EMBL, Grenoble, France
(d) EMBL, Hamburg, Germany
(e) ESRF, Grenoble, France
(f) Global Phasing, Cambridge, UK
(g) MAX LAB, Lund, Sweden
(h) MRC LMB, Cambridge, UK
(i) NSLS, Brookhaven, U.S.
(j) SLS, Villigen, Switzerland
(k) Synchrotron Soleil, France
(l) University of Sydney, Australia
(m) University of York, UK

EDNA developers
Executive committee
EDNA MXv1 Characterisation

• MX sample characterisation taking into account radiation damage
 • Indexing using MOSFLM or Labelit
 • Parallel integration of reference images
 • If flux + beam size + chemical composition: RADDOSE for estimating radiation damage
 • BEST strategy calculation
 • taking into account radiation damage
 • multi-subwedge data collection strategies
Why use a workflow tool in EDNA?

- Implicit documentation of workflow
- Possibility to “easily” modify / construct new workflows
- Possibility to debug workflows
- Possibility to restart a stopped workflow
Example Characterisation Workflow

- Characterisation XML Input
 - Plugin for preparing indexing input
 - Indexing plugin
 - Plugin for preparing integration input
 - Integration plugin
 - Plugin for preparing strategy input
 - Strategy plugin
 - Plugin for assembling characterisation results
 - Characterisation XML results
EDNA plugin in workflows – current implementation

• Advantages :
 • Modular / plugins – easy to add new functionality
 • Data model framework
 • Testing framework

• Disadvantages :
 • Input / result data must be defined in data model
 • Only one input object and one result object for each plugin