
AALib::Framework
__concepts__

Asynchronous Action Library
AALib – PyAALib – JyAALib
Tutorial and Techniques

by
R. A. Pieritz

AALib

Asynchronous
Asynchrony, in the general meaning, is the

state of not being synchronized.

Action
Action is something a person can do...

Library
A library is a collection of information,

sources, resources, and services: it is
organized to be used for something.

Framework

Wikipedia Definition
http://en.wikipedia.org/wiki/Framework

“In software development, a framework is a defined support
structure in which another software project can be organized
and developed. A framework may include support programs,
code libraries, a scripting language, or other software to help
develop and glue together the different components of a
software project.”

Free Dictionary Definition
http://computingdictionary.thefreedictionary.com/application%20framework

“- (1) The building blocks of an application.
- (2) A set of software routines that provide a foundation
structure for an application. Frameworks take the tedium out
of writing an application from scratch. Object-oriented
application frameworks, which are the norm today, are
structured as a class library.
- Each class library has its way of doing things, and although
the purpose of a framework is to eliminate a certain amount
of programming drudgery, programmers must first learn the
structure and peculiarities of the framework in order to use
it.”

AALib

What is it?
The project is a Framework based in Pure Object

Oriented Concepts to develop asynchronous
communication between threads and external
process

An application can be entirely designed and
developed based on dynamic
multithread PLUGINS.

Why?
“__Code once and run anywhere__“
“We want to code easily asynchronous actions to do a

lot of things together and independently”

Where?
Only a single code for all platforms: Windows, MacOSX,

Linux and Solaris

How?
The actual version was developed using Python in the

basic layer - PyAALib - and it is designed to be
natively translated to Java using Jython – JyAALib.

AALib
__main::concept__ = Think OBJECT !!

Everything is an object to be managed by objects.

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

AALib Framework
Main Features

• Independent of the System architecture and OS;

• Independent of the Programming Language;

• Independent of the Programming IDE;

• Full OOP design – Object Oriented Programming;

• One code running in all platforms with the same features and actions;

• Asynchronous Multithread Actions + Thread Safety + Grid Computing;

• Advanced Resources and Generic Application Design (i.e.: RAID);

• Implements the standard internet services and protocols;

• Use only Objects with simple and standard definitions;

• Each Object is independent and self-contained (no hierarchy to generate and
manage entities);

• The data persistence is assured by each individual object and
is preserved when it is shared with other entities
or stored (duplication or other operation);

• Complete and independent Unittest framework;

• Multithread exception handling and log;

• Automatic generation of code documentation in html, PDF, and man;

• Incorporate Debug and Exception control Model;

• Well defined code syntax and rules for the code design;

• Simple code maintenance (everything is an independent object
 defined by a class, all code is identical in all operational system);

• Code reliability (i.e.: runtime flow control robustness);

• No necessary external licenses or agreements;

AALib
Basic Design

Patterns

• MVC
Model-View-Controller

• Object Factory
Plugin Model

• Callback
Generic code connection and execution

AALib Framework

Implementation

• Python
PyAALib 1.0
2005-2007

http://pyaalib.sourceforge.net

• JAVA-Jython-Python
PyAALib-JyAALib 2.0
- initiated on July 2007
- full functional – testing and adding new features

- to be released on 2008

http://jyaalib.sourceforge.net

TODAY

PyAALib – JyAALib
version 2.0

Why?
It allows mix Java code and the AALib framework with

the simplicity of Python and the powerful
deployment architecture of Java.

How?
You can use java inside the PyAALib plugins in a pure

java system.

Where?
The same code source runs on Python or Java/Jython.

It can be deployed in Java environments without
Python installed.

Full Compatible?
Python 2.2 and later
Jython 2.2
JAVA 6.0

PyAALib-JyAALib
Overview

It is a well tested open source framework
to be used on RAID development of asynchronous
multi-thread applications.

It implements the basic plugin architecture to be used
with the special PyAALib action objects and standard
Python and JAVA classes. This mechanism allows
the rapid development of dynamic and modular
applications to facilitate the continuous
improvement.

Modern software engineering techniques based on
unittest are used to guarantee the quality of each
part of the code during the development cycle.

The library is full compatible with all standard
frameworks using C, C++, Fortran, Java, Jython
and Python.

TODAY

PyAALib – JyAALib
version 0.9

Projects Using The Framework?

[DRank]
Crystal Data Ranking Module in DNA Package.
The DNA project - http://www.dna.ac.uk - BioXHIT http://www.bioxhit.org

TODAY

PyAALib – JyAALib
version 1.0

Projects Using The Framework?

[DNABenchmark]
Test benchmark manager to evaluate the scientific results.
The DNA - http://www.dna.ac.uk - project is a collaboration initially between

the ESRF, the CCLRC Daresbury Laboratory and MRC-LMB in Cambridge,
with the aim of completely automating the collection and processing of X-
Ray protein crystallography data - Founded by European Community
Project: BioXHIT http://www.bioxhit.org

TODAY

PyAALib – JyAALib
version 1.0

Projects Using The Framework?

[BeamFocus]
BeamLine Assisted Focus Application.
Software used to assist the beamline operator to optimally focus X-Rays

beams at ESRF European Synchrotron Radiation Facility – SciSoft
Group http://beamfocus.sourceforge.net

TODAY

PyAALib – JyAALib
version 2.0

Projects Using The Framework?

[EDFExplorer]
Software used to assist the beaml ine user to transfer his data in EDF format to

an HDF5 container - ESRF European Synchrotron Radiation Facility –
SciSoft Group - http://edfexplorer.sourceforge.net

Overview
Resume

• AALib is an OOP Framework

• It is composed by classes

• It is free and Open Source

• It has a built in multithread plugin
architecture

• PyAALib runs on Python

• PyAALib- JyAALib runs on Jython-JAVA
virtual machine platform

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

AALib
Basis

• Everything is an Object defined by a Class
• Each class is defined in a single file
• The Class use the “ClassNameSpace”:

“AL”+Something
• The name order of the class reflects the inheritance –

“it is not the English language”, i.e.:

• Almost the main classes and their Childs are “Thread
Safety” – they can be used in simultaneous events –
i.e.: ALVerbose, ALAction, ALLogFile, etc....

• The “Thread Safety” mechanism is based on POSIX
semaphores to be used on Massive parallel tasks.

AL....

ALAction

ALAction..... ALActionMethod ALActionSet ALActionProcess

ALActionSetAsynchronous ALActionSetSynchronous

ALAction.....

AALib
Basis

You can use an AALib class in any kind of code or library

We have about 140 different classes today (october/2008)

We have at least 1000 methods to test these classes (and
increasing)

from ALVerbose import ALVerbose

ALVerbose.screen("Hello world")

from ALVerbose import ALVerbose
from ALString import ALString

oalString = ALString("Hello world")
ALVerbose.screen(oalString)

AALib
Basis

We use the UnitTest concept to test all methods and classes
of the Library

ALMetaObject

ALObject

ALTest

ALTestCaseALTestSuite

ALUnitTest

ALUnitTestSuite

AALib
Basis

• All complex events (i.e.: Actions,
ALApplication, etc) are modelled by a
simple standard sequential STEP cycle
“engine”

• These “engines” are encapsulated on
threads and can be used in a massive
multithread application – i.e.: ALAction,
ALApplication, ALComandLine, ALTest,
etc....

PreProcess

Process

PostProcess

TimeLine

 Init

End

[Basic Application Framework skeleton]

“A single code line to define and run a
complete asynchronous multithread
application based on a dynamic plugin
architecture”AALib

Basis from ALImportKernel import ALApplication

if __name__ == '__main__':

 ALApplication("DemoApplication", “2.0”).execute()

AALib
Basis - Plugin

• Dynamic Plugin Architecture

The plugin architecture add new functionalities
to the ALApplication.

 ALApplication

AALib Basis
Resume

• AALib has “out of the box” classes for
modern software

• The basic engine model is simple and
flexible:
PreProcess – Process- PostProcess

• The main use case is “one line of code”

• The basic use case is a complete modern
application model

• It has resources, multithread log
manager, built-in basic controls, etc

• The plugin model is built-in in the main
use case

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Main
Classes

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Callback
Design
Pattern

• What does that mean?
It allows connect different codes (or programs) with NO

RELATION between each other!! and control them...
HostCode X ExternalCode(s)

• Why?
To extend a code with no changes, to add features to a

complex code, to connect asynchronous code, to
synchronize events, etc....

• How does it works? – Steps:
– A HostCode has a “Slot” object to connect the

ExternalCode (in fact: the Slot object store a list
of ExternalCodes);

– An ExternalCode is connected to the HostCode
Slot;

– In the HostCode loop, an “Event” calls the Slot to
execute the ExternalCode;

– Optional: the HostCode can pass an Object to the
ExternalCode list by its Slot.

CallBack Example:
ALAction::executeAction()

class ClassBT :

 def methodPrintInit(self, _obj = None):
 ALVerbose.unitTest(“ Class B::printing in INIT: " + ALString(_obj))

 def methodPrintEnd(self, _obj = None):
 ALVerbose.unitTest(“ Class B::printing in END : " + ALString(_obj))

 def methodPrintRun(self, _obj = None):
 ALVerbose.unitTest(“ Class B::printing in RUN : " + ALString(_obj))

........

 oClassBT = ClassBT()

 oalAction = ALAction()

 oalAction.connectPreProcess(oClassBT.methodPrintInit)
 oalAction.connectPostProcess(oClassBT.methodPrintEnd)
 oalAction.connectProcess(oClassBT.methodPrintRun)

 oalAction.executeAction()

oalAction.connectPreProcess(oClassBT.methodPrintInit)
oalAction.connectProcess(oClassBT.methodPrintRun)
oalAction.connectPostProcess(oClassBT.methodPrintEnd)

PreProcess

Process

PostProcess

slotInitCall

init

slotPreProcessCall

slotProcessCall

end

slotPostProcessCall

Init

TimeLine

slotEndCall

End

CallBack Example:
ALAction::executeAction()

CallBack Example:
ALAction::executeAction()

connecting a sequence
of events

class ClassBT :

 def methodPrintInit(self, _obj = None):
 ALVerbose.unitTest(“ Class B::printing in INIT: " + ALString(_obj))

 def methodPrintEnd(self, _obj = None):
 ALVerbose.unitTest(“ Class B::printing in END : " + ALString(_obj))

 def methodPrintRun(self, _obj = None):
 ALVerbose.unitTest(“ Class B::printing in RUN : " + ALString(_obj))

........

 oClassBT = ClassBT()

 oalAction = ALAction()

 oalAction.connectPostProcess(oClassBT.methodPrintEnd)
 oalAction.connectPostProcess(oClassBT.methodPrintEnd)
 oalAction.connectPostProcess(oClassBT.methodPrintEnd)

 oalAction.connectPreProcess(oClassBT.methodPrintInit)
 oalAction.connectPreProcess(oClassBT.methodPrintInit)
 oalAction.connectPreProcess(oClassBT.methodPrintInit)

 oalAction.connectProcess(oClassBT.methodPrintRun)

 oalAction.executeAction()

Callback
Resume

It allows connect different codes (or programs)
with NO RELATION between each other!! and
control them...

To extend a code with no changes, to add
features to a complex code, to connect
asynchronous code, to synchronize events,
etc....

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Case”
• Design of the main “use case”
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

[Case 1: Basic Application Framework skeleton]

“A single code line to define and run a
complete asynchronous multithread
application based on a dynamic plugin
architecture”

Main
Use Case

from ALImportKernel import ALApplication

if __name__ == '__main__':

 ALApplication("DemoApplication", “2.0”).execute()

[Case 1: Basic Application Framework skeleton]

A basic application class defines a “skeleton” to
RAID (“Rapid Application Development and Deployment”).

It manages all logs, resources and actions creating and connecting
all code with the heterogeneous operational system.

 All signals and events are controlled and monitored by the main
code inspector.

The main architecture to generate and control the multi-thread
actions is encapsulated on the framework and its basic classes
to simplify the code development.

Main
Use Case

[Case 1: Basic Application
Framework skeleton]

from ALImportKernel import ALApplication
from ALImportSystem import ALVerbose

def methodPrintHello(_oalObject = None):
 ALVerbose.screen("Hello World")

if __name__ == '__main__':

 # JIT compiler accelerator
 ALCompiler.accelerator()

 # Application Framework definition
 obLoadPlugins = False
 oalApplication = ALApplication("DemoApplication", “2.0“, obLoadPlugins)

 # Application Callback Connexion
 oalApplication.connectExecute(methodPrintHello)

 # Application Execution
 oalApplication.execute()

[Case 1: Basic Application Framework skeleton]

The code fragment shows the construction of the basic skeleton.
It implements the RAID platform. These code implements the
ALApplication class to manage all actions (controlled threads) and
callbacks. The External method “methodPrintHello” is connected to
the application by the callback system.

[Case 1: Basic Application
Framework skeleton]

How does it work?

- The Python runtime code accelerator is optional. It
optimises the code execution only in X86
processors.

-

- The ALApplication class is created with the option
"no plugins". It avoid the search and store of the
information of plugins. The plugins
are loaded when the plugin object is instantiated,
not when it is found. This mechanism is introduced
later in other tutorial.

- The callback system is a "slot" to connect any
external code to the central loop of the application.
In the example, the “methodPrinterHello" method is
glued to the main execution point. The main loop
will call this external method
during the execution.

- The main application loop is started when the method
"execute" is invocated.

Application Framework definition
obLoadPlugins = False
oalApplication = ALApplication("DemoApplication", “2.0“, obLoadPlugins)

JIT compiler accelerator
ALCompiler.accelerator()

Application Callback Connexion
oalApplication.connectExecute(methodPrintHello)

Application Execution
oalApplication.execute()

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use case
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Design of the
main use case

from ALImportKernel import ALApplication

if __name__ == '__main__':

 ALApplication("DemoApplication", “2.0”).execute()

AALib Internals:

ALApplication::execute ()

The Massive Parallel Kernel

ALApplication::execute()
“Gantt Chart – 8 STEPS”

#0 #1 #2 #3 #4 #5 #6 #7
#8

TimeLine

from ALImportKernel import ALApplication
from ALImportSystem import ALVerbose

def methodPrintHello(_oalObject = None):
 ALVerbose.screen("Hello World")

if __name__ == '__main__':

 # JIT compiler accelerator
 ALCompiler.accelerator()

 # Application Framework definition
 oalApplication = ALApplication("DemoApplication", “2.0”)

 # Application Callback Connexion
 oalApplication.connectExecute(methodPrintHello)

 # Application Execution
 oalApplication.execute()

#0 #1 #2 #3 #4 #5 #6 #7
#8

TimeLine

ALApplication::execute()
“Gantt Chart – 8 STEPS”

Application Execution
 oalApplication.execute() i.e.: running 15 different plugins or codes in parallel

#0 #1 #2 #3 #4 #5 #6 #7
#8

TimeLine

ALApplication::execute()
“Gantt Chart – 8 STEPS”

Application Execution
 oalApplication.execute() i.e.: running 15 different plugins or codes in parallel

ALApplication::execute()
“Gantt Chart – 8 STEPS”

#0 #1 #2 #3 #4 #5 #6 #7
#8

TimeLine

Application Execution
 oalApplication.execute() i.e.: running 15 different plugins or codes in parallel

ALApplication::execute()
“Gantt Chart – 8 STEPS”

#0 #1 #2 #3 #4 #5 #6 #7
#8

TimeLine

Application Execution
 oalApplication.execute() i.e.: running 15 different plugins or codes in parallel

ALApplication::execute()
“Gantt Chart – 8 STEPS”

#0 #1 #2 #3 #4 #5 #6 #7
#8

TimeLine

Application Execution
 oalApplication.execute() i.e.: running 15 different plugins or codes in parallel

ALApplication::execute()
“Gantt Chart – 8 STEPS”

#0 #1 #2 #3 #4 #5 #6 #7
#8

TimeLine

AALib Internals:
ALApplication::execute ()

The CODE

Show Time

Other
Use Cases

[Plugin Framework]

[XML-RPC server plugin architecture]

[Basic Callback System]

[Data Binding – XML Scheme object construction]

[SubProcess Management]

A basic application class defines a “skeleton” to
RAID (“Rapid Application Development and Deployment”).

It manages all logs, resources and actions creating and connecting
all code with the heterogeneous operational system.

 All signals and events are controlled and monitored by the main
code inspector.

The main architecture to generate and control the multi-thread
actions is encapsulated on the framework and its basic classes
to simplify the code development.

Main
Use Case
Resume

A basic application “skeleton” elements for dynamic plugins:

Automatic:

- One line code to define the ALApplication object;

- a folder to store the directories of plugins

 default place = “PROJECT_ROOT/plugins”;

- the folders with plugins;

Static:
- One line code to define the ALApplication object;

- a folder to store the directories of plugins
 default place = “PROJECT_ROOT/plugins”;

- the folders with plugins;

- a plugin mapping file definition in the plugin folder -
default file =

“PROJECT_ROOT/plugins/comandLineInterface.xml”;

Main
Use Case
Resume

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Plugin
Architecture

• Dynamic Plugin Architecture

The plugin architecture add new functionalities
to the ALApplication.

 ALApplication

Plugin
Architecture

• Dynamic Plugin Architecture

The “plugin” is a python-jython-java code
dynamically generated and add to the main
ALApplication framework. The mechanism can
be used with any code.

The based “plugin” defined by the AALib comes
from the ALAction and it is full “multi-thread”
and “Thread Safety”

The “plugin” is defined by the name of the “file”.
The main class inside must have the same
“name”

The “plugin” can be generated from a pair of
“XSD+Xml” files = Data Binding Mechanism.

A special xml file(s) can “map” the plugin set. It
manages all information needed to
characterise the commands and information of
the plugin (help, man, etc...)

A basic
Plugin

• A standard plugin code

• Thread Architecture (inherits from ALAction)
 ALPlugin::executePlugin()

 the file: “PluginExample.py”

from ALVerbose import ALVerbose
from ALPlugin import ALPlugin

class PluginExample(ALPlugin):

 def process(self, _oalObject = None):
 ALVerbose.screen(“Hello World from the PluginExample”)

......

To be used in a code somewhere:

oalPlugin = ALApplication.getPluginObject(“PluginExample")
if (oalPlugin!=None):
 oalPlugin.executePlugin()

PreProcess

Process

PostProcess

TimeLine

 Init

End

Plugin
Architecture

Resume

The “plugin” is a python-jython-java code
dynamically generated and add to the main
ALApplication framework.

The based “plugin” is full “multi-thread” and
“Thread Safety”

The “plugin” can be generated from a pair of
“XSD+Xml” files = Data Binding Mechanism.

A special xml file(s) can “map” the plugin set. It
manages all information needed to
characterise the commands and information of
the plugin (help, man, etc...)

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Plugin Mapping with a XML file

Defined by:
“The Command Line Interface Class”

presented on the use case Gantt chart

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Data Binding by
XSD definition

• Why?
XML data binding refers to the process of

representing the information in an XML
document as an object in computer memory.

This allows applications to access the data in the
XML from the object rather than using the
DOM to retrieve the data from a direct
representation of the XML itself.

• How?
An XML data binder accomplishes this by

automatically creating a mapping between
elements of the XML schema of the document
we wish to bind and members of a class to be
represented in memory.

• Where?
When this process is applied to convert an XML

document to an object, it is called
unmarshalling. The reverse process, to
serialize an object as XML, is called
marshalling.

Data Binding by XSD definition

Example:
“The ComandLineInterface Data”

The XSD Definition

Data Binding by XSD definition

Example:
“The ComandLineInterface Data”

The XML File

The code:

oalXsdDataBinding = ALXsdDataBinding(“cmdLineInt.xsd”)

oalObject = oalXsdDataBinding.getObject(“cmdLineIntModel.xml”)

If (oalObject!=None):

 oalObject.outputXml()

Data Binding by XSD definition

Example:
“The code example to generate
the Python - Jython Binding”

Data Binding by
XSD definition

Resume

• It is used to represent only DATA

• Extremely powerful to describe complex
object hierarchy of Data

• It can NOT to be used to store LOGIC
(“code”)

• It can be used to simplify the data
manipulation : automatic generation of
code

• It is used also for data plugin generation
“on the fly” by AALib framework

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Plugins based on XSD
definitions • The plugin is defined by an XSD scheme file

• The object instance will be created from the
XML data file.

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Documentation

http://aalib.sourceforge.net

http://pyaalib.sourceforge.net

http://jyaalib.sourceforge.net

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Code
Syntax

and
rules

from ALVerbose import ALVerbose
from ALPlugin import ALPlugin

class ALPluginExample(ALPlugin):

 def process(self, _oalObject = None):
 ALVerbose.screen(“Hello World from the PluginExample”)

......

To be used in a code somewhere:

oalPlugin = ALApplication.getPluginObject(“ALPluginExample")
if (oalPlugin!=None):
 oalPlugin.executePlugin()

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Show Time

Objective
TODAY

• Overview
• Understand the basis
• View of the main classes and tree
• Basic Callback Concepts
• Understand the main “Use Cases”
• Design of the main use cases
• Plugin architecture
• Plugin mapping using XML files
• Data Binding with XSD
• Plugins based on XSD definitions
• Documentation
• Code syntax and rules
• Examples using the CVS repository
• Discussion about Best Practices

Discussion

• What we are still developing until the release?
Process manager class

Plugin manager class - Plugin version system

Improve some sub systems to be more flexible – XSD,
XML parsing by “path”, etc.

Documentation, documentation, documentation

Bugzilla

External packages for Jython-JAVA: Image
manipulation, HDF5, EDF files, etc.

Test and Add some interfaces for “high value” standard
JAVA libraries as “External Packages”

Testing and encapsulating the SWT (eclipse GUI native
elements) to be “easy” to use

..... more

• The Limitations of the JAVA architecture!
OOP limitations – the virtual mechanism is not trivial
External Process manager is Poor – or NULL
2x slower compared to native python

Thanks !

Documents:

http://aalib.sourceforge.net
http://pyaalib.sourceforge.net
http://jyaalib.sourceforge.net - 2008
http://edfexplorer.sourceforge.net
http://beamfocus.sourceforge.net
http://www.esrf.eu/UsersAndScience/Experiments/TBS/SciSoft/

Contact:
aalib_info@yahoo.com
romeu.pieritz@gmail.com

