AALib::Framework
__concepts__

Asynchronous Action Library
AALib - PyAALib - JyAALib
Tutorial and Techniques

by
R. A. Pieritz

AALIb

Asynchrony, in the general meaning, is the
state of not being synchronized.

Action is something a person can do...

A library is a collection of information,
sources, resources, and services: it is
organized to be used for something.

Framework

“In software development, a framework is a defined support
structure in which another software project can be organized
and developed. A framework may include support programs,
code libraries, a scripting language, or other software to help
develop and glue together the different components of a

software project.”

"- (1) The building blocks of an application.

- (2) A set of software routines that provide a foundation
structure for an application. Frameworks take the tedium out
of writing an application from scratch. Object-oriented
application frameworks, which are the norm today, are
structured as a class library.

- Each class library has its way of doing things, and although
the purpose of a framework is to eliminate a certain amount
of programming drudgery, programmers must first learn the
structure and peculiarities of the framework in order to use

it ”

AALIb

The project is a Framework based in Pure Object
riented Concepts to develop asynchronous
communication between threads and external
process

" Code once and run anywhere__

"We want to code easily asynchronous actions to do a
lot of things together and independently”

Only a single code for all platforms: Windows, MacOSX,
Linux and Solaris

The actual version was developed using Python in the
basic layer - PyAALib - and it is designed to be
natively translated to Java using Jython - JyAALib.

e~ Think OBJECT

e Overview

e Understand the basis

e View of the main classes and tree
e Basic Callback Concepts

e Understand the main “"Use Cases”

- " * Design of the main use cases
ObJeCtlve e Plugin architecture
TODAY * Plugin mapping using XML files

e Data Binding with XSD

e Plugins based on XSD definitions

e Documentation

e Code syntax and rules

e Examples using the CVS repository
e Discussion about Best Practices

e (QOverview

Objective
TODAY

AALib Framework
Main Features

Independent of the System architecture and OS;
Independent of the Programming Language;
Independent of the Programming IDE;

Full OOP design - Object Oriented Programming;

One code running in all platforms with the same features and actions;
Asynchronous Multithread Actions + Thread Safety + Grid Computing;
Advanced Resources and Generic Application Design (i.e.: RAID);
Implements the standard internet services and protocols;

Use only Objects with simple and standard definitions;

Each Object is independent and self-contained (no hierarchy to generate and
manage entities);

The data persistence is assured by each individual object and
is preserved when it is shared with other entities
or stored (duplication or other operation);

Complete and independent Unittest framework;

Multithread exception handling and log;

Automatic generation of code documentation in html, PDF, and man;
Incorporate Debug and Exception control Model;

Well defined code syntax and rules for the code design;

Simple code maintenance (everything is an independent object
defined by a class, all code is identical in all operational system);

Code reliability (i.e.: runtime flow control robustness);

No necessary external licenses or agreements;

Model-View-Controller

AALIb
Basic Design
Patterns Plugin Model

Generic code connection and execution

AALib Framework
Implementation

PyAALib 1.0
2005-2007
http://pyaalib.sourceforge.net

PyAALib-JyAALib 2.0

= initiated on July 2007
- full functional - testing and adding new features

= to be released on 2008

http://jyaalib.sourceforge.net

TODAY

PyAALib - JyAALib

version 2.0

It allows mix Java code and the AALib framework with
the simplicity of Python and the powerful
deployment architecture of Java.

You can use java inside the PyAALib plugins in a pure
java system.

The same code source runs on Python or Java/Jython.
It can be deployed in Java environments without
Python installed.

Python 2.2 and later
Jython 2.2
JAVA 6.0

PyAALib-JyAALib
Overview

It is a open source framework
to be used on RAID development of asynchronous
multi-thread applications.

It implements the to be used
with the special PyAALib action objects and standard
Python and JAVA classes. This mechanism allows
the rapid development of dynamic and modular
applications to facilitate the continuous
improvement.

Modern software engineering techniques based on
are used to guarantee the quality of each
part of the code during the development cycle.

The library is with all standard
frameworks using C, C++, Fortran, Java, Jython

and Python.

Crystal Data Ranking Module in DNA Package.
The DNA project - http://www.dna.ac.uk - BioXHIT http://www.bioxhit.org

DNA - automateD collectioN of datA

Login 1o Database | Sample Screening [Sample Ranking
Sample ranking

TODAY

Collect Reference Images | Auto Index | Strategy | Results

Redo Rank ew Rank Result Import Rank Project Export Rank Project

1[
u u
y I — y I Total exposure time Characterize Single Crystal Collect Automatically

0 Feedback for PROPOSAL : MX415 Control
version 0.9

Collection status: [REady tein] [sumit recabac) [
Processing status: [Ready
Executive Output | MOSFLM Output

s uin

: Strategy results:
Conpletenes
s pultiplicity

: & mergs
anking resol:

g to /twp/dnal

. seresming dens

jmiting for new command

TODAY

PyAALib - JyAALib

version 1.0

Test benchmark manager to evaluate the scientific results.

The DNA - http://www.dna.ac.uk - project is a collaboration initially between
the ESRF, the CCLRC Daresbury Laboratory and MRC-LMB in Cambridge,
with the aim of completely automating the collection and processing of X-
Ray protein crystallography data - Founded by European Community
Project: BioXHIT http://www.bioxhit.org

DNA::Benchmark

TODAY

PyAALib - JyAALib

version 1.0

BeamLine Assisted Focus Application.

Software used to assist the beamline operator to optimally focus X-Rays
beams at ESRF European Synchrotron Radiation Facility — SciSoft
Group http://beamfocus.sourceforge.net

e
(-] 100 100 0

BaamIntensity
5 &

g

@

2
;
et
.--§.
)

TODAY

PyAALib - JyAALib

version 2.0

Software used to assist the beamline user to transfer his data in EDF format to
an HDF5 container - ESRF European Synchrotron Radiation Facility -
SciSoft Group - http://edfexplorer.sourceforge.net

EDFExplorer PyAALib HDF5 ESRF about us web

["EDFExplorer”]

ob

Tutori

Contact

Overview
Resume

AALib is an OOP Framework
It is composed by classes
It is free and Open Source

It has a built in multithread plugin
architecture

PyAALib runs on Python

PyAALib- JyAALib runs on Jython-JAVA
virtual machine platform

e Understand the basis

Objective
TODAY

e Everything is an Object defined by a Class
e Each class is defined in a single file
e The Class use the “ClassNameSpace”:

AAL| b “AL"+Something

. e The name order of the class reflects the inheritance -
BaS|S “it is not the English language”, i.e.:

e Almost the main classes and their Childs are “Thread
Safety” - they can be used in simultaneous events -
i.e.: ALVerbose, ALAction, ALLogFile, etc....

e The “Thread Safety” mechanism is based on POSIX
semaphores to be used on Massive parallel tasks.

You can use an AALIib class in any kind of code or library

from ALVerbose import ALVerbose
ALVerbose.screen("Hello world")

from ALVerbose import ALVerbose
from ALString import ALString

oalString = ALString("Hello world")

AALi b ALVerbose.screen(oalString)

Basis

We have about 140 different classes today (october/2008)

We have at least 1000 methods to test these classes (and
increasing)

AALIb
Basis

We use the UnitTest concept to test all methods and classes
of the Library

e All complex events (i.e.: Actions,
] ALApplication, etc) are modelled by a
AALIb simple standard sequential STEP cycle

i “engine”
Basis

e These “engines” are encapsulated on
threads and can be used in a massive
multithread application - i.e.: ALAction,
ALApplication, ALComandLine, ALTest,

Init etc....

PreProcess

Process

PostProcess

End
TimeLine

AALIb
Basis

from ALImportKernel import ALApplication

! I

if _name__ =='_ _main__ "

ALApplication("DemoApplication”, "2.0”).execute()

The plugin architecture add new functionalities
to the ALApplication.

‘ ES Control Interface

Plugin:
Control Interface

USER
Web Client

AALIib
Basis - Plugin

ORACLE ‘

AALIb Basis
Resume

AALIib has “out of the box” classes for
modern software

The basic engine model is simple and
flexible:

PreProcess — Process- PostProcess
The main use case is “one line of code”

The basic use case is a complete modern
application model

It has resources, multithread log
manager, built-in basic controls, etc

The plugin model is built-in in the main
use case

e View of the main classes and tree

Objective
TODAY

= =PyAALib-lyAALb-HEAD-v2.0 [lapquark.esrf.fr] [} ALHandler.py 1.1 (ASCII +kv)) ALServer.py 1.1 (ASCIT Hdev)
423 = externalToolBuilders AlHandlerRequest.py 1.1 (ASCII 4dav) i ALServerHttp.py 1.1 (ASCII 4dov)
+-[= .settings AlHandlerRequestHttp.py 1.1 (ASCII -kkv) ALserver¥miRpc.py 1.1 (ASCII Hev)
|3 =libraries ALHdfS.py 1.1 (ASCII 4kv) ALSignal.py 1.1 (ASCII Hdev)
=y modules ALHAFSEdfpy 1.2 (ASCII 4kv) ALSlot.py 1.2 (ASCII kkv)

[Fl ALAction.py 1.5 (ASCIT 4dv) AlHistogram.py 1.1 (ASCII +kv) ALStream.py 1.1 (ASCII dov)
jALAcﬁonMemod.py 1.1 (ASCII +kv) AlHistogramImage.py 1.1 (ASCII +kv) ALStreamFile.py 1.2 (ASCII 4kv)
:'ALAcﬁonMemod'ﬁmer.py 1.1 (ASCIT 4kv) ALHttp.py 1.1 (ASCII +kv) ALStreamPipe.py 1.1 {ASCIT +kv)
3| ALActionProcess.py 1.4 (ASCIT 4kv) [Fl ALImage.py 1.1 (ASCII +kv) ALStreamSerial.py 1.1 (ASCII kv)

:j ALActionSet.py 1.1 (ASCII +kv) [} ALImageMatrix.py 1.4 (ASCII kv)) ALStreamXml.py 1.1 (ASCII 4kv)

| j ALActionSetAsynchronous.py 1.1 (ASCIIT +kv) [Fl ALlmagePil.py 1.2 (ASCII 4dv) ALString.py 1.2 (ASCII 4kv)
jALAcﬁonSeSynﬁronous.py 1.1 (ASCII 4w) ALImportAction.py 1.1 (ASCII +kv) ALSubProcess.py 1.2 (ASCII -kkv)
jALAppDeﬁniﬁon.py 1.3 (ASCII Hkv) ALImportCommunication.py 1.1 (ASCII +kv) ALSynchronized.py 1.1 {ASCIT +kkv)
:'ALAppDeﬁniﬁonCommandLine.py' 1.3 (ASCII 4kv) AlImportDataTools.py 1.2 (ASCIT 4dev) ALSysInfo.py 1.1 (ASCIT 4kkv)

j ALAppDefiniionControl.py 1.2 {ASCIIT kkv) AlImportlython.py 1.3 (ASCII 4dv) ALSystem.py 1.4 (ASCII kkv)

:'ALAppDeﬁniﬁonCDre.py 1.4 (ASCII kkv) 7| ALImportiernel.py 1.1 (ASCII +kkv) ALTemplateClass.py 1.1 {ASCII +kv)
jALAppDeﬁniﬁonEnd.py 1.5 (ASCII kv) AlImportMath.py 1.1 (ASCII +kkv) AlTest.py 1.4 (ASCII +kv)

__j ALAppDefinitionInit.py 1.2 {ASCII kv) il ALImportPackagelython.py 1.1 (ASCII 4dov)) AlLTestCase.py 1.6 (ASCII &kkv)

j ALAppDefinitionQutput.py 1.1 (ASCII +kkv) [Fl ALImportPackagePython.py 1.1 (ASCIT 4dov) AlTestSuite.py 1.4 (ASCII kkv)

j ALApplication.py 1.1 {ASCIT +kv) AlImportPython.py 1.2 (ASCII kkv) AlThread.py 1.2 {ASCII 4kkv)

j ALApplicationActionControl.py 1.2 (ASCIT Hkv) AlImportSaript.py 1.2 (ASCII 4dwv) ALThreadControl.py 1.3 (ASCII +kkv)
:'ALAppIicaﬁonCommunicamr.py 1.2 (ASCII kkv) AlImportSystem.py 1.8 (ASCIT 4dev) AlLThreadingCondition.py 1.1 {ASCIT +kv)
:'ALAppIicaﬁonServeerlRpc.py 1.1 (ASCII +kv) AlInformation.py 1.1 (ASCII +kkv) ALTime.py 1.3 (ASCII 4dev)

i) ALArgument.py 1.1 (ASCII +kv) ALInformationAction.py 1.1 (ASCIT 4kv) ALToken.py 1.1 (ASCII -kkv)

i) ALAssert.py 1.2 (ASCII kkv) |F} ALJythonSubProcess.py 1.4 (ASCIT kkv) ALTrace.py 1.1 (ASCII -kkv)

3 ALClient.py 1.1 (ASCII +kkv) _ AlList.py 1.1 (ASCII -kkv)) ALUnitTest.py 1.6 (ASCII 4kv)

ALClientHttp.py 1.1 (ASCII kkv) :-J AlLog.py 1.1 (ASCII +kv) AlUnitTestSuite.py 1.1 {ASCIT -kkv)
Main AlCom.py 1.1 (ASCIT 4dv) [} ALLogFile.py 1.1 (ASCII +kv) AlVerbose.py 1.3 (ASCII +kv)
ALComClient.py 1.1 (ASCII Hdev) AlManager.py 1.1 {(ASCII kv) AL¥ml.py 1.3 (ASCIIT Hdov)

Classes ALComClientHttp.py 1.1 (ASCII kkv) AlLManagerSignal.py 1.1 (ASCII +kv) ALxmiElement.py 1.2 {ASCIT +kv)
ALCommand.py 1.1 (ASCII +kkv) 7] ALManagerSignalSingleton.py 1.1 (ASCIT +kv) AL¥miNode. py 1.1 (ASCIT k)
ALCommandLine.py 1.4 {ASCII 4kv) ALMdS.py 1.1 (ASCIIT +kv) Al¥sd.py 1.3 (ASCII +kv)
ALCommandLineaArgument.py 1.1 (ASCII -kkv) AlMessage.py 1.1 (ASCII kkv) '§dDataBinding.py 1.1 (ASCII +kv)

[} ALCommandLineInterface.py 1.2 (ASCII 4kv) [Fl ALMessageCommand.py 1.1 (ASCIT 4dev) =y ztests

l'] ALCommandLineInterfaceDefinition.py 1.1 (ASCIT 4kv) _ AlMetaObject.py 1.1 (ASCIT +kkv) #-[=F =DataForTests
¥} ALCommandLineInterfaceDefinition.xsd 1.1 (ASCIT Hdev) _ AlMultimethod.py 1.1 (ASCII kkv) 4|23 =PythonlythonTestDataFor

;lj ALCommandLineInterfaceElement.py 1.1 (ASCII -kkv) I ALObject.py 1.5 (ASCII +kv) = »testsuite
¥y ALCommandLineInterfaceElement.xsd 1.1 (ASCII +kkv) _ AlPipe.py 1.1 (ASCII kkv) B AlLImportTestCase.py 1.3 (ASCII 4kv)
jALCommunicabDr.py 1.1 (ASCII kkv) B ALPlugin.py 1.1 (ASCII kkv) AlTestCaseALObject.py 1.4 (ASCII 4kv)
jALCompiIer.py 1.1 {ASCII +kv) |F} ALPythonSubProcess.py 1.3 (ASCII +kkv) AlTestCaseAlResource.py 1.3 (ASCII kkv)
]ALCDmServer.py 1.1 (ASCIT 4kv) AlRandom.py 1.1 (ASCII kv) AlTestCaseAlVerbose.py 1.4 (ASCII kv)
jALComServerHtm.py 1.1 {ASCII kkv) |F} ALResource.py 1.3 (ASCII +kv) | ALTestCaseALXml.py 1.1 {ASCII kkv)
jALDeﬁniﬁon.py 1.3 (ASCII 4kv) _ ALScript.py 1.1 (ASCII 4kv) =AlTestCaseAl¥sd.py 1.1 (ASCII 4dkv)
jALDict.py 1.1 (ASCII 4kv) _ ALScriptCompile.py 1.1 (ASCIT kkv) AlTestCaseAl¥sdDataBinding.py 1.1 (ASCIT +kv)
jALDicﬁonary.py 1.4 (ASCII 4dv) _ ALScriptEpydoc.py 1.1 (ASCII +kv) AlTestSuiteKernel.py 1.4 (ASCII kkv)
:'ALDiskEprorer.py 1.3 (ASCII +kkv) _ ALScriptEric3.py 1.1 (ASCII kkv) P} AlTestSuiteSystem.py 1.4 (ASCII kkv)

7] ALEdf.py 1.4 (ASCII o) [F) ALScriptkomodo.py 1.1 {(ASCII 4kv) = =unittestsuite

ALException.py 1.1 (ASCIT 4kv) |F} ALScriptMdssum.py 1.1 (ASCIT +kv) G =ALUnitTestAction.py 1.3 (ASCII 4]
ALExceptionControl.py 1.1 (ASCIT o) ALScriptversionControl.py 1.1 (ASCII kkv) =ALUnitTestall.py 1.2 (ASCIT 4kv)
ALExceptionSignal.py 1.1 (ASCII kdkv) AlLSemaphore.py 1.1 (ASCII 4kv) AlLUnitTestCommunication.py 1.2 {ASCIT -kkv)
ALExternalPackEdfFile.py 1.1 (ASCII 4kv) ALServer.py 1.1 (ASCIT 4kv) AlUnitTestdython.py 1.3 {ASCII +kv)
ALExternalPackGenerateDS.py 1.1 (ASCIIT o) _ ALServerHttp.py 1.1 (ASCII kkv) AlUnitTestkernel.py 1.3 (ASCII Hdev)
ALFactory.py 1.1 (ASCII +kv) [B) ALServer¥miRpc.py 1.1 (ASCII 4kv) ALUnitTestMath.py 1.2 {ASCII +kv)
ALFactoryPlugin.py 1.1 (ASCII v} _ ALSignal.py 1.1 (ASCIT +kv) AlUnitTestPackageJython.py 1.2 (ASCII Hkkv)
ALFactoryPluginStatic.py 1.1 (ASCII kkv) _ ALSlot.py 1.2 (ASCII +kv) =ALUnifTestPackagePython.py 1.2 {ASCIT +kv)
ALFile.py 1.3 (ASCII kv) [F) ALStream.py 1.1 (ASCII 4kv) ALUnitTestScript.py 1.2 (ASCII +kv)
AlHandler.py 1.1 (ASCII +kv) [AlStreamFile.py 1.2 (ASCIT 4kv) AlUnitTestServerXmiRpc.py 1.2 (ASCIT 4kv)
AlHandlerRequest.py 1.1 (ASCII 4kv) _ ALStreamPipe.py 1.1 (ASCII kkv) i!_"j ALUnitTestSystem.py 1.5 {ASCIT +kv)

e Basic Callback Concepts

Objective
TODAY

Callback

Design
Pattern

e What does that mean?

It allows connect different codes (or programs) with NO
RELATION between each other!! and control them...

X

e Why?

To extend a code with no changes, to add features to a
complex code, to connect asynchronous code, to
synchronize events, etc....

e How does it works? - Steps:

A has a object to connect the
(in fact: the Slot object store a list
of);
An is connected to the
Slot;
In the loop, an “Event” calls the Slot to
execute the ;
Optional: the can pass an Object to the

list by its Slot.

CallBack Example:
ALAction::executeAction()

class ClassBT :

def methodPrintInit(self, _obj = None):
ALVerbose.unitTest(" Class B::printing in INIT: " + ALString(_obj))

def methodPrintEnd(self, _obj = None):
ALVerbose.unitTest(" Class B::printing in END : " + ALString(_obj))

def methodPrintRun(self, _obj = None):
ALVerbose.unitTest(" Class B::printing in RUN : " + ALString(_obj))

oClassBT = ClassBT()

oalAction = ALAction()

oalAction.connectPreProcess(oClassBT.methodPrintInit)
oalAction.connectPostProcess(oClassBT.methodPrintEnd)
oalAction.connectProcess(oClassBT.methodPrintRun)

oalAction.executeAction()

CallBack Example:
ALAction::executeAction()

init
slotInitCall

PreProcess

lotPreProcessCa

Process

Init
TimeLine

oalAction.connectPreProcess(

oalAction.connectProcess(
oalAction.connectPostProcess(

slotProcessCall
PostProcess

. lotPostProcessCi Il

slotEndCall

end

End

oClassBT.methodPrintInit)
oClassBT.methodPrintRun)
oClassBT.methodPrintEnd)

CallBack Example:
ALAction::executeAction()

connecting a sequence
of events

class ClassBT :

def methodPrintInit(se/f, _obj = None):

ALVerbose.unitTest("

def methodPrintEnd(sel/f, _obj = None):

ALVerbose.unitTest("

def methodPrintRun(self, _obj = None):

ALVerbose.unitTest("

oClassBT
oalAction

oalAction.
oalAction.
oalAction.
oalAction.
oalAction.
oalAction.

oalAction.

oalAction.

= ClassBT()
= ALAction()
connectPostProcess(

connectPostProcess(
connectPostProcess(

connectPreProcess(
connectPreProcess(
connectPreProcess(

connectProcess(

executeAction()

Class B::printing in INIT: " + ALString(_obj))

Class B::printing in END : " + ALString(_obj))

Class B::printing in RUN : " + ALString(_obj))

oClassBT.methodPrintEnd
oClassBT.methodPrintEnd
oClassBT.methodPrintEnd

oClassBT.methodPrintInit
oClassBT.methodPrintInit
oClassBT.methodPrintInit

oClassBT.methodPrintRun

It allows connect different codes (or programs)
with NO RELATION between each other!! and
control them...

Callback
Resume

To extend a code with no changes, to add
features to a complex code, to connect
asynchronous code, to synchronize events,
etc....

e Understand the main “Use Case”
Objective
TODAY

]
Ma I n from ALImportKernel import ALApplication
U Se Ca Se if _name__ == "__main__"

ALApplication("DemoApplication”, “"2.0”).execute()

Main
Use Case

A basic application class defines a “'skeleton” to
RAID (“Rapid Application Development and Deployment”).

It manages all logs, resources and actions creating and connecting
all code with the heterogeneous operational system.

All signals and events are controlled and monitored by the main
code inspector.

The main architecture to generate and control the multi-thread
actions is encapsulated on the framework and its basic classes
to simplify the code development.

The code fragment shows the construction of the basic skeleton.

It implements the RAID platform. These code implements the
ALApplication class to manage all actions (controlled threads) and
callbacks. The External method “"methodPrintHello” is connected to
the application by the callback system.

from ALImportKernel import ALApplication
from ALImportSystem import ALVerbose

def methodPrintHello(_oalObject = None):
ALVerbose.screen("Hello World")

I I

if _name__ == main__ "

JIT compiler accelerator
ALCompiler.accelerator()

Application Framework definition
obLoadPlugins = False
oalApplication = ALApplication("DemoApplication”, "2.0", obLoadPlugins)

Application Callback Connexion
oalApplication.connectExecute(methodPrintHello)

Application Execution
oalApplication.execute()

JIT compiler accelerator
ALCompiler.accelerator()

The Python runtime code accelerator is optional. It
optimises the code execution only in X86
DI QCE ()

Application Framework definition
obLoadPlugins = False

oalApplication = ALApplication("DemoApplication”, "2.0", obLoadPlugins)

The ALApplication class is created with the option
"no plugins". It avoid the search and store of the
information of plugins. The plugins

are loaded when the plugin object is instantiated,
not when it is found. This mechanism is introduced

Application Callback Connexion

oalApplication.connectExecute(methodPrintHello)

The callback system is a "slot" to connect any
external code to the central loop of the application.
In the example, the “*methodPrinterHello" method is
glued to the main execution point. The main loop
will call this external method
during the execution.

Application Execution

oalApplication.execute()

- The main application loop is started when the method

"avaciite" ic invocated

Objective e Design of the main use case
TODAY

DeSig n Of the from ALImportKernel import ALApplication

if _name_ =='_ _main__ "

ma I n u Se Ca Se ALApplication("DemoApplication”, "2.0”).execute()

AALib Internals:

ALApplication::execute ()

ALApplication::execute()
“Gantt Chart - 8 STEPS”

__init__

loadResources
gitLog

loagPlu

Application Framework definition
oalApplication = ALApplication("DemoApplication”, "2.0”)

ALApplication::execute()
“Gantt Chart - 8 STEPS”

Application Execution
oalApplication.execute() i.e.: running 15 different plugins or codes in parallel

Execule

InitStep

controlCmdLine

cantrol dF

B

ALApplication::execute()
“Gantt Chart - 8 STEPS”

Application Execution
oalApplication.execute() i.e.: running 15 different plugins or codes in parallel

Execule

cmdlinePlugind]

cmdlinePlugind2

ineCodeN

ALApplication::execute()

“Gantt Chart - 8 STEPS”

Application Execution
oalApplication.execute() i.e.: running 15 different plugins or codes in parallel

] H H H H H EE e

4 execComandLlinelnterface

Flugin07

Timekine

ALApplication::execute()
“Gantt Chart - 8 STEPS”

Application Execution
oalApplication.execute() i.e.: running 15 different plugins or codes in parallel

Execule

FreFrocessor
ction00
CodePreFroc
Frocessor
CodeProcCORECORE
Flugin30
PostProcessor
CodePosi00

CodePaost0q

Timel

ALApplication::execute()
“Gantt Chart - 8 STEPS”

Application Execution
oalApplication.execute() i.e.: running 15 different plugins or codes in parallel

Execule

ActionControlLOOP

#7

ALApplication::execute()
“Gantt Chart - 8 STEPS”

i‘ execute

InitStep

controlCmdLine

controlDEdP

B

exgcComandLine

cmdlinePlugind]

cmdlineFlugind2

cmdffineCoded

execComandLlinelnterface

Flug[n05

Flugin07

Fluginid

Flug[nz0

CodeBathte

FreFrocessor

ction00

CodePreProc

Frocessor

CodeProcCORECORE

Flugin30

PostProcessor

CodePosi00

CodePaost0q

ActionPostFinal

ActionControlLOOP

#7

AALib Internals:

ALApplication::execute ()
The CODE

def execunte| self, bInit = True }:

rrEEEr

This 1s the Main AlLdppDefinitionCore Loop Control
LIRS)
ALVerbose.DEBUG("Exscution: 2xecute{}")
try:
try
if (self._ executeCorelnit(bInit }==True):
s2lf. executeCore ()

except ALExceptionSignal, ocalExceptionSignal:
oalSignal = oalExceptionSignal.getSignal ()

ALVerbose.DEBUG| "Execution: ALAppDefinitionCorse.sxscute () - AlL FRAMEWORE FORCE CLOSE APPLICATION"
if (ocalSignal'=Hone }:
LLVerbosze .DEBUG("2 execute () - stopped by Signal: " + ALString(oalSignal.getSigmall()))
else:
AlLVerbose.DEBUG("ALAppD=efinitionCore.execute () - stopped undesr Unknown signal: " + ALString(oalSignal.getSignal())})

self. executeCoreRaise ()

eXCEpT:
AlVerbose.error{ "Execution: ALippDefini
self}__executeCoIeRaiseIJ

finally:
self. executeCoreClose()

Show Time

[Plugin Framework]
[XML-RPC server plugin architecture]
Other [Basic Callback System]
Use Cases

[Data Binding — XML Scheme object construction]

[SubProcess Management]

Main
Use Case
Resume

A basic application class defines a “skeleton” to
RAID (“Rapid Application Development and Deployment”).

It manages all logs, resources and actions creating and connecting
all code with the heterogeneous operational system.

All signals and events are controlled and monitored by the main
code inspector.

The main architecture to generate and control the multi-thread
actions is encapsulated on the framework and its basic classes
to simplify the code development.

A basic application “skeleton” elements for dynamic plugins:

Automatic:
- One line code to define the ALApplication object;
- a folder to store the directories of plugins
Ma i n default place = “"PROJECT_ROOT/plugins”;

Use Case
Resume Static:

- the folders with plugins;

- One line code to define the ALApplication object;

- a folder to store the directories of plugins
default place = “"PROJECT_ROOT/plugins”;

- the folders with plugins;
- a plugin mapping file definition in the plugin folder -

default file =
“"PROJECT_ROOT/plugins/comandLinelInterface.xml”;

Objective
TODAY

e Plugin architecture

The plugin architecture add new functionalities
to the ALApplication.

4 ES Control Interface

USER

Web Client i
Control Interface

Plugin E

Database
ORACLE

Plugin
Architecture

The “plugin” is a python-jython-java code
dynamically generated and add to the main
ALApplication framework. The mechanism can
be used with any code.

The based “plugin” defined by the AALib comes
from the ALAction and it is full “*multi-thread”
and “Thread Safety”

The “plugin” is defined by the name of the “file”.
The main class inside must have the same
“name”

The “plugin” can be generated from a pair of
"XSD+Xml” files = Data Binding Mechanism.

A special xml file(s) can “map” the plugin set. It
manages all information needed to
characterise the commands and information of
the plugin (help, man, etc...)

e A standard plugin code

the file: “"PluginExample.py”
from ALVerbose import ALVerbose
from ALPlugin import ALPlugin
class PluginExample(ALPlugin):
def process(self, _oalObject = None):

ALVerbose.screen(“Hello World from the PluginExample”)

To be used in a code somewhere:

oalPlugin = ALApplication.getPluginObject(“PluginExample")
if (oalPlugin!=None):
oalPlugin.executePlugin()

A basic
Plugln * Thread Architecture (inherits from ALAction)

Init

PreProcess

Process

PostProcess

End
TimeLine

Plugin
Architecture
Resume

The “plugin” is a python-jython-java code
dynamically generated and add to the main
ALApplication framework.

The based “plugin” is full *“multi-thread” and
“Thread Safety”

The “plugin” can be generated from a pair of
"XSD+Xml” files = Data Binding Mechanism.

A special xml file(s) can “map” the plugin set. It
manages all information needed to
characterise the commands and information of
the plugin (help, man, etc...)

Objective

TODAY * Plugin mapping using XML files

information

eforge.
eforge.

Plugin Mapping with a XML file

number tw

Defined by:

ForT FolderPlugins/

“The Command Line Interface Class” The HELP lines on the screen for

command —-

presented on the use case Gantt chart

Objective
TODAY

e Data Binding with XSD

Data Binding by
XSD definition

XML data binding refers to the process of
representing the information in an XML
document as an object in computer memory.

This allows applications to access the data in the
XML from the object rather than using the
DOM to retrieve the data from a direct
representation of the XML itself.

An XML data binder accomplishes this by
automatically creating a mapping between
elements of the XML schema of the document
we wish to bind and members of a class to be
represented in memory.

When this process is applied to convert an XML
document to an object, it is called
unmarshalling. The reverse process, to
serialize an object as XML, is called
marshalling.

"command™

"argument™

"commandDescription™
="l
"classMethod™

"pluginFileHame™

anual™

"webldress"

Data Binding by XSD definition

Example:
“The ComandLinelnterface Data”

The XSD Definition

tstring”

"unbounded"
eElement™

The code:

Data Binding by XSD definition

Example:

“The ComandLinelnterface Data”

The XML File

oalObject.outputXml()

1> —jytjonOl’f
'>Pnglnuyt10nTe3t01

1p>The HELP lines on the screen for

oalXsdDataBinding = ALXsdDataBinding(“cmdLinelnt.xsd”)
oalObject = oalXsdDataBinding.getObject(
If (oalObject!=None):

“cmdLineIntModel.xml”)

an standart PyRALib p

the command --jython.</help

21>The MANUAL lines on the screen for
the command --jython.

t>PyRALIb 2005-2007<
r>Romeu Andre Pieritz«</a
2007/09/10 13:47:13

p>The HELP lines on the screen for
the command --jython.</
21>The MANUAL lines on the screen for
the command —--jython.</
rebhdressshttp: //pypaalib. sourceforge . net-
e>http://pvaalib. soarceforge net<,
c>PyRALib 2005-2007</
Romeu Andre Pieritz<
2007/09/10 13:47:13

nd>--jython03<,/command:>
nxPlugindythonTest03- n
elp>The HELP lines on the screen for
the command --jython.<,
nual>The MANUAL lines on the screen for
the command —--jython.

ceshttp: //pyaalib. soarceforge net<,
>PyRdLib 2005-2007</
Romeu Andre Pieritz</
2007/09/10 13:47:13

Element>

s=>http://pypaalib.sourceforge.net
erhttp://pyaalib. soarceforge net<,

ressrhttp://pypaalib. soarceforge net

H

ALString{ ".
= ALString(".

3

dInputFile, oalS5trPy

A

Data Binding by XSD definition aonieer aranindingd. gerohiect | ""fmnp“'me

Example:
“The code example to generate salstr File — ALString(- "y
the Python - Jython Binding” 3) indi = zdDataBinding(ocalStr¥sdInputFile)

nding5 >t { oalStr¥mlInputFile, o0alStrPy0

tS.outputFile("L)

Binding(
ndingé.ge

e It is used to represent only DATA

o Extremely powerful to describe complex
object hierarchy of Data

Data Binding by e It can NOT to be used to store LOGIC

XSD definition codes
Resume e It can be used to simplify the data
manipulation : automatic generation of
code

e It is used also for data plugin generation
“on the fly” by AALib framework

Objective
TODAY

e Plugins based on XSD definitions

Plugins based on XSD
definitions e The plugin is defined by an XSD scheme file

e The object instance will be created from the
XML data file.

cdtFileName = odtTest getFileNameCrystalTestRes
if({ DTDi=skExplorer. 1=rF11Ei odtFileName }):
odtPlugin =]:'TAF.F.J..‘LC‘ tion.getPluginCbject { "DICrvstalTestResult", odtFileName)

if (odtPlugin'!=None) :
aodtGroupTestResult . addCrystalTestResult(odtPlugin)

Objective
TODAY

e Documentation

PyaALib | AALib | aboutus | web

["Code once and run anywhere"]

PyAALIb | AALb || aboutus | web

[Why?]

nt

[Where?] 4

rything

Modules)
Download ALAction Module Hierarchy
ALActionMethod
ALActionMethodTimer ALAction
onPro
it

Docum
Al ActionMethod

AL ActionMethodTimer
ALActionProcess
ALActionSet
ALActionSetAsynchronous
ALActionSetSynchronous

AL Application

AL ApplicationActionControl
ALApplicationClass
ALApplicationCommunicator
ALApplicationServerXmIRpc

ALArgument
AL

ALCommandLineArgument
AlLCommandLinelnterface
ALCommandLinelnterfaceDefiniti

ALDefinition

ALDict

AlLDictionary
ALDiskExplorer

ALEdf

ALExternal PackEdfFile: EdfFi
ALExternalPackGenerateD$
ALFactory

AlLFactoryPlugin

ALFile

Al Handler

Documentation

http://aalib.sourceforge.net
http://pyaalib.sourceforge.net

http://jyaalib.sourceforge.net

Objective
TODAY

e Code syntax and rules

Code
Syntax
and
rules

from ALVerbose import ALVerbose
from ALPlugin import ALPlugin

class ALPluginExample(ALPlugin):
def process(self, _oalObject = None):

ALVerbose.screen(“Hello World from the PluginExample”)

To be used in a code somewhere:

oalPlugin = ALApplication.getPluginObject(“ALPluginExample")
if (oalPlugin!=None):
oalPlugin.executePlugin()

Objective
TODAY

e Examples using the CVS repository

Show Time

Objective
TODAY

e Discussion about Best Practices

Discussion

e What we are still developing until the release?
Process manager class

Plugin manager class - Plugin version system

Improve some sub systems to be more flexible - XSD,
XML parsing by “path”, etc.

Documentation, documentation, documentation
Bugzilla

External packages for Jython-JAVA: Image
manipulation, HDF5, EDF files, etc.

Test and Add some interfaces for “high value” standard
JAVA libraries as “External Packages”

Testing and encapsulating the SWT (eclipse GUI native
elements) to be “easy” to use

o The Limitations of the JAVA architecture!

OOP limitations - the virtual mechanism is not trivial
External Process manager is Poor — or NULL

2x slower compared to native python

Documents:

http://aalib.sourceforge.net

http://pyaalib.sourceforge.net

http://jyaalib.sourceforge.net - 2008
http://edfexplorer.sourceforge.net
http://beamfocus.sourceforge.net
http://www.esrf.eu/UsersAndScience/Experiments/TBS/SciSoft/

Thanks !

Contact:

aalib_info@yahoo.com
romeu.pieritz@gmail.com

